Microsurgical Selective Obturator Neurotomy for Spastic Hip Adduction

Yeul-Bum Park, M.D.,1 Seong-Ho Kim, M.D.,1 Sang-Woo Kim, M.D.,1 Chul-Hoon Chang, M.D.,1 Soo-Ho Cho, M.D.,1 Sung-Ho Jang, M.D.2
Departments of Neurosurgery,1 Rehabilitation Medicine,2 College of Medicine, Yeungnam University, Daegu, Korea

Objective: Cerebral palsy may induce harmful spastic hip adduction. We report the result of microsurgical selective obturator neurotomy, performed on 12 spastic hip adductions of 6 patients, followed clinically for at least 26 months postoperatively.

Methods: Microsurgical selective obturator neurotomies, involving microsurgical resection of the anterior obturator nerve branches were performed on 6 patients from January 2000 through June 2003. All patients presented with the inability to sit and 2 patients complained of persistent, intractable pain. We used intraoperative bipolar stimulation to identify selected motor branches.

Results: The procedure was performed bilaterally in all patients. In the 3 patients in whom contractures were present, microsurgical selective obturator neurotomies were accompanied by an additional tenotomy of the adductor muscles. Selective tibial neurotomy was performed on three of six patients who originally presented with a spastic ankle. Postoperatively, all spastic hip adductions were corrected more than 60 degrees in passive abduction-adduction amplitude. However, one patient who did not receive active postoperative physiotherapy demonstrated a decreased passive abduction-adduction amplitude upon follow-up. There were no surgical complications.

Conclusion: We think microsurgical selective obturator neurotomy may be an effective procedure in the treatment of localized, harmful spastic hip adduction after failure of well conducted conservative treatment. As muscular contractions are often associated with spasticity of the hip adductors, an adjunctive tenotomy may be an option. Comprehensive postoperative physiotherapy is essential to improve long-term results.

KEY WORDS: Cerebral palsy · Spasticity · Hip adduction · Microsurgical selective obturator neurotomy.
took careful note of other features of cerebral palsy, such as motor weakness, trunk control, poor balance and fixed contractures, all of which are factors affected by the final results of the neurotomy. X-rays were taken of involved joints, and in some patients total spine and pelvic x-rays were taken, as well. The population composed of 3 males and 3 females, and mean age was 14 years old from 5 to 33 aged. All patients had crossing of the legs and were unable to sit and walk (Fig. 1). In addition, both adults had fixed bilateral hip joint contractures with persistent intractable pain. One child had right hip dislocation (Table 1).

The goal of the microsurgical selective obturator neurotomy was to microsurgically resect 50–75% of the anterior branches of the obturator nerve (Fig. 2). Coagulation of the proximal nerve ending was performed in order to prevent the re-growth and possible neuroma formation. We used intraoperative bipolar stimulation to identify selected motor branches, innervating the selected spastic muscles responsible for the patient’s abnormal posture and functional handicaps. An additional tenotomy of adductor muscles was performed in cases in which immediate post-neurotomy passive abduction-adduction amplitude did not exceed 60 degrees. A selective tibial neurotomy was performed after the obturator neurotomy on those patients with a spastic ankle who did not have concomitant fixed contractures or dislocations.

The surgical outcome was rated both immediately after operation and at last out patient department follow up as follows: “Good” if passive abduction-adduction amplitude was consistently greater than 60 degrees; “Fair” if 41-60 degrees; and, “Poor” if less than 40 degrees.

Physiotherapy was started two weeks after surgery, with the application of an electrical stimulation program component for most of the patients.

Results

Postoperatively, all patients had improved weight-bearing in the sitting position and a decrease in the severity of the intractable pain (Fig. 3). The two adults who had bilateral hip joint contractures and the one child who had a right hip dislocation showed immediate

Table 1. Long-term surgical results of microsurgical selective obturator neurotomy

<table>
<thead>
<tr>
<th>No</th>
<th>Age/Sex</th>
<th>Etiology</th>
<th>Obturator neurotomy</th>
<th>Additional nerve</th>
<th>STN</th>
<th>Cx.</th>
<th>F/U</th>
<th>Final Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7/F</td>
<td>CP</td>
<td>Rt.</td>
<td>Yes</td>
<td>No</td>
<td>–</td>
<td>48Mo</td>
<td>Good*</td>
</tr>
<tr>
<td>2</td>
<td>6/F</td>
<td>CP</td>
<td>Lt.</td>
<td>No</td>
<td>No</td>
<td>–</td>
<td>43Mo</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>33/F</td>
<td>CP</td>
<td>Lt.</td>
<td>Yes</td>
<td>No</td>
<td>–</td>
<td>35Mo</td>
<td>Fair†</td>
</tr>
<tr>
<td>4</td>
<td>25/M</td>
<td>CP</td>
<td>Rt.</td>
<td>Yes</td>
<td>No</td>
<td>–</td>
<td>32Mo</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>8/M</td>
<td>CP</td>
<td>Lt.</td>
<td>Yes</td>
<td>No</td>
<td>–</td>
<td>29Mo</td>
<td>Good</td>
</tr>
<tr>
<td>6</td>
<td>5/M</td>
<td>CP</td>
<td>Lt.</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
<td>26Mo</td>
<td>Good</td>
</tr>
</tbody>
</table>

CP, cerebral palsy; Rt, right; Lt, left; STN, selective tibial neurotomy; Cx, complications; F/U, follow-up; Mo, months; Good: passive abduction-adduction amplitude greater than 60 degrees. Fair*: from 41 to 60 degrees (good at immediate postoperative and 16 months follow-up but decreased passive abduction-adduction amplitude over 60 degrees to 45 degrees at 35 months follow-up).
post-neurotomy passive abduction-adduction amplitude not exceeding 60 degrees. In this five obturator neurotomies requiring additional tenotomy of the adductor muscles, the amplitude exceeded 60 degrees. Three of the children who did not have fixed hip joint contractures or dislocations showed immediate postneurotomy passive abduction-adduction amplitude over 60 degrees. After obturator neurotomy wound care, the children with spastic ankle underwent bilateral selective tibial neurotomy. After active physiotherapy, each child was able to walk without major difficulty.

There were no surgical complications. However, at a 35 months postoperative follow-up examination, one female patient experienced a decreased in the passive abduction-adduction amplitude, from approximately 60 degrees to 45 degrees. She did not receive active physiotherapy postoperatively. Nevertheless, she was pain-free (Table 1).

Discussion

Hip adduction is the most commonly affected movement in patients with cerebral palsy. In those who are severely affected and unable to walk, it gradually but inexorably leads to subluxation and subsequent dislocation, resulting in disastrous functional consequences. Hip dislocations lead to difficulty sitting, intractable pain, and perineal care problems. Many factors contribute to hip subluxation and dislocation, such as coxa valga, pelvic obliquity, and acetabular shallowness secondary to the absence of weight-bearing. The main factor, however, is muscle imbalance, which produces adduction and flexion deformities, shifting the axis of rotation of the hip towards the lesser trochanter and decreasing femoral head coverage.

The incidence of dislocation of the hip in patients with severe cerebral palsy is between 60% and 80%. It has also been shown that as many as 50% of these dislocated hips become painful for the patient. Physical therapy, oral pharmacologic therapy, subarachnoid infusion of baclofen, chemical neurolytic blocks, cryoneurolysis and orthopedic and neurosurgical techniques have been used to manage spasticity due to cerebral palsy. Oral pharmacologic therapy is frequently ineffective or only partially effective or associated with untoward and intolerable side effects. Some authors reported that this may be the reason for the increasing popularity of implanted systems for subarachnoid infusion of baclofen. However, under our national medical insurance, this procedure is not covered; therefore, this procedure is not commonly used. Chemical neurolysis with alcohol or phenol is frequently used to manage spasticity but is associated with the risk of neuralgia, deafferentation pain, and unintentional soft-tissue injury secondary to neurolytic agent spread to adjacent tissues. Dorsal root entry zonotomy by the selective destroying mainly the laterally located nociceptive and centrally located myotactic afferent fibers within the posterior root relieves the spasticity of the limbs. Selective posterior rhizotomy can also be applied to cerebral palsy spasticity.

Microsurgical selective peripheral neurotomy in patients with cerebral-palsy is considered an effective surgical treatment for many localized forms of handicapping spasticity. Microsurgical techniques have improved over the years, intraoperative stimulation which contributes largely to the functional improvement has become an important adjunct procedure. The stimulation provides a very precise degree of spasticity release and is highly selective since it involves the fascicles in close proximity to the innervated muscle. This advantage helps the avoid excessive manipulation of sensitive fascicles that may result in possible painful and trophic side effects. The 7 to 10mm nerve resection with proximal resection end coagulation helps prevent re-growth and possible neuroma formation. Recurrence is becoming very rare with this technique, as was already demonstrated by Sindou and Mertens. Cooperation with the physiotherapist is very important in order to achieve optimal postoperative results. In our study, the one patient that did not receive physiotherapy decreased passive abduction-adduction amplitude from approximately 60 degrees to 45 degrees.

The patient with total involvement has marked spasticity in all four extremities, rarely is able to walk, and frequently has deformities of both the spine and the hips. For a patient with cerebral palsy, sitting requires at least 90 degrees of flexion in the hip joint and a relatively straight back. Either scoliosis or a painful dislocated hip, or both, can decrease the patient’s ability to sit. The hip deformities in the patient with total involvement may progress to painful dislocations which can affect the ability to sit for long periods and complicate perineal care. Spastic deformities are initially the result of muscle tone alone. The degree of muscle tone is difficult to quantitate, as it varies with the position of adjacent joints and body posture. Eventually, the spastic deformities can result in fixed musc-
ulotenodinous contractures that may progress to fixed joint contractures. Finally the hip may dislocate, the usual direction is posterior, due to the overactivity of the adductors and flexors of the hip.

In patients who are able to walk, overactive adductors may cause a decrease in the width of the gait, which can increase the likelihood of crossing of the legs and tripping. Release of the adductor longus or gracilis or adductor transfers to the ischium are both accepted methods of increasing the width of gait when adductor tone alone is the problem. Problems related to hyperabduction after anterior obturator neurotomy have received attention in the literature. However, hyperabduction of the hip due to postoperative hip adductor insufficiency presents several problems. An anterior obturator neurotomy may destroy all function of the gracilis, adductor longus, and adductor brevis. Total dysfunction of these adductors combined with iliopsoas division leads to adduction insufficiency and, hence, hyperabduction.

The adductor brevis plays an important role in the stability of the hip. Clinically, once the adductor brevis no longer functions after obturator neurotomy, movement worsens, resulting in a broad-based gait. Reconstructive surgery is extremely difficult. Some authors reported that an anterior branch obturator neurotomy should be avoided in children who can walk because of the potential for developing a wide-based gait and hyperabduction and should be reserved for patients who have marked fixed contractures with subluxation or recurrent contractures. However, in patients who also have a fixed adductor contracture that prohibits abduction of more than 30 degrees, whether or not the patient is able to walk, the adductor brevis should be released and an obturator neurotomy should be considered. The participants in our study did not develop hyperabduction or broad-based gait. Another possible complication of the procedure in non-ambulatory patients is the production of a fixed extension contracture, resulting in difficulty with sitting and eventual anterior dislocation of the hip. Thus, these procedures should be done with care in such patients and only when there are fixed contracts in flexion, without extensor thrust.

It is hoped that the use of appropriate soft-tissue procedures, when necessary, will prolong their ability to walk and decrease their pain over the years. And orthopedic surgeries including osteotomies and hip joint surgery are considered in cases involving severe contracture and in cases of insufficient soft tissue surgery.

Conclusion

We think microsurgical selective obturator neurotomy may be an effective procedure in the treatment of localized harmful spastic hip adduction after failure of well-conducted conservative treatment associating physiotherapy and antispasmodic medications. We believe that this procedure must be performed at a young age, before the fixed deformities and other orthopedic complications like as contracture and hip joint dislocation compromising walking ability. For muscular contractions, associated with hip adductor spasticity, a tenotomy may be an effective adjunct to the obturator neurotomy for good result. Intensive pre- and post-operative physiotherapy is necessary to achieve maximal postoperative results.

References